CBIR: From Low-Level Features to High-Level Semantics
نویسندگان
چکیده
The performance of a content-based image retrieval (CBIR) system is inherently constrained by the features adopted to represent the images in the database. Use of low-level features can not give satisfactory retrieval results in many cases; especially when the high-level concepts in the user’s mind is not easily expressible in terms of the low-level features. Therefore whenever possible, textual annotations shall be added or extracted and/or processed to improve the retrieval performance. In this paper a hybrid image retrieval system is presented to provide the user with the flexibility of using both the high-level semantic concept/keywords as well as low-level feature content in the retrieval process. The emphasis is put on a statistical algorithm for semantic grouping in the concept space through relevance feedback in the image space. Under this framework, the system can also incrementally learn the user’s search habit/preference in terms of semantic relations among concepts; and uses this information to improve the performance of subsequent retrieval tasks. This algorithm can eliminate the need for a stand-alone thesaurus, which may be too large in size and contain too much redundant information to be of practical use. Simulated experiments are designed to test the effectiveness of the algorithm. An intelligent dialog system, to which this algorithm can be a part of the knowledge acquisition module, is also described as a front end for the CBIR system.
منابع مشابه
بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملContent Based Image Retrieval Using Semantic Grouping and Linear Discriminant Analysis
The biggest problem in content-based image retrieval (CBIR) is bridging the gap between low-level features and high-level semantics. Relevance feedback is a popular method for incorporating semantic information in CBIR. This paper discusses an improvement upon a relevance feedback approach that utilizes semantic grouping and linear discriminant analysis to close the gap between lowlevel feature...
متن کاملAPICAS: An example of incorporating colour semantic descriptors into digital art repositories
The paper presents the architecture of experimental Content-Based Image Retrieval (CBIR) system APICAS ("Art Painting Image Colour Aesthetics and Semantics"). This system has been developed within a doctoral thesis which aims to provide a suite of specialized tools for CBIR within a digital library of art images. The main functions in APICAS are: data ingest; visual features extraction; and dat...
متن کاملFrom Low Level Features to High Level Semantics
A typical content-based information retrieval (CBIR) system, e.g., an image or video retrieval system, includes three major aspects: feature extraction, high dimensional indexing and system design [1]. Among the three aspects, high dimensional indexing is important for speed performance; system design is critical for appearance performance; and feature extraction is the key to accuracy performa...
متن کاملContent-Based Image Retrieval using Deep Learning
Content-Based Image Retrieval using Deep Learning Anshuman Vikram Singh Supervising Professor: Dr. Roger S. Gaborski A content-based image retrieval (CBIR) system works on the low-level visual features of a user input query image, which makes it difficult for the users to formulate the query and also does not give satisfactory retrieval results. In the past image annotation was proposed as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000